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Abstract. The paper proposed a neural solution to the direct torque vector con-
trol of three phase induction motor including real-time trained recurrent ncural
velocity controller and a hysteresis flux and torque controllers, which permitted
the speed up reaction to the variable load. The basic cquations and elements of
the direct field oriented torque control scheme are given. The control scheme is
realized by one RNN learned by a real-time BP algorithm and three FFNNs
learned off-line by Levenberg-Marquardt algorithm with data taken from PI-
control scheme simulations. The graphical results of modelling shows a better
performance of the NN control system with respect to the PI controlled system
realizing the same general control scheme.

1. Introduction

The Neural Networks (NN) applications for identification and control of electrical
drives became very popular in last decade. In [1], a multilayer-perceptron-based-
neural-control is applied for a DC motor drive. In [2], a recurrent neural network is
applied for identification and adaptive control of a DC motor drive mechanical system.
In the last decade a great boost is made in the area of induction motor drive control.
The induction machine, particularly the cage type, is most commonly used in adjust-
able speed AC drive systems [3]. The control of AC machines is considerably more
complex than that of DC machines. The complexity arises because of the variable-
frequency power supply, AC signals processing, and complex dynamics of the AC
machine [3], [4]. In the vector or Field-Oriented Control (FOC) methods, an AC ma-
chine is controlled like a separately excited DC machine, where the active (torque) and
the reactive (field) current components are orthogonal and mutually decoupled so they
could be controlled independently, [3]-[6]. There exist two methods for PWM current
controlled inverter — direct and indirect vector control, [3]. This paper considered the
direct control method, where direct AC motor measurements are used for field orienta-
tion and control. There are several papers of NN application for AC motor drive direct
vector control. In [7] a Feedforward NN (FFNN) is used for vector PW modulation,
resulting in a faster response. In [8] an Antificial NN is used for fast estimation of the
angle used in a FOC system. Some basic principles of the direct torque control of IM
drives are given in [9]. The [10] applied NNs in the direct torque control of IM drive.
In [11], a FFNN is used for commutation table emulation in a direct torque control of
IM. In [12], the authors proposed to use a NN so to compensate the variations of the
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stator resistance, necessary for the FOC of flux in a direct torque IM control scheme.
In [13] off-line trained FFNNs-arc used to substitute the blocks of coordinate trans-
formation, vector flux computation, torque estimation, and commutations table realiza-
tion in a direct self-tuning IM control scheme. In [14] a FFNN-based estimator of the
feedback signals is used for induction motor drive direct FOC system. The paper [15]
proposed two NN-based methods (direct and indirect) for FOC of induction motors.
The results and particular solutions obtained in the referenced papers shows that the
application of NN offers a fast and improved alternative of the classical FOC schemes.
The present paper proposed a neural solution of a direct torque vector control problem
that assures fast response and adaptation to a variable load.

2. Mathematical Models of the Three Phase Induction Motor

A Phase (a, b, ¢) Model: The Induction Motor (IM) equations, [5], [6], for stator and
rotor voltages in vector-matrix form are given as:
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Where the variables are: voltage, current, and flux, stator and rotor, three dimensional
(a, b, c) vectors, with given up phase components; Iy and r, are stator and rotor wind-
ing resistance diagonal matrices, with given up equal elements r; and 1, respectively; I3
is an identity matrix with dimension three, and p is a Laplacian differential operator.
The vector-matrix block-form representation of the flux leakage is given by the equa-

tion:
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Where: the stator, rotor and mutual block-inductance (3x3) matrices are described in
[5], [6]. The relative leakage inductance depends on the winding turn stator/rotor ratio
n, and on the angular rotor position , respectively [5], [6]. Finally, the voltage equa-
tions (1) could be expressed with respect to the stator in the (a, b, ¢) model form:
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Where the given up variables are the relative rotor vol

tage, the current, the flux and the
resistance.

A (q, d, 0) Model: The (a, b, c) model is ve
simplified using a transformation to the q,
stator and rotor voltages in (q, d, 0) vector-

ry complicated for control, so it could be
d, 0) form. The AC motor cquations for the
matrix form are given as follows:
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Where the variables are: voltage, current, and flux, stator and rotor, three dimensional

vectors, with given up components; r, and Ty are stator and rotor resistance diagonal
matrices, given by (1); , and  are diagonal angular velocity matrices, given by:
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The vector-matrix block-form representation of the flux leakage is given by:
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Where: the stator, rotor and mutual block-inductance (3x3) matrices are given in [5],
[6]. The (q, d, 0) model could be written in the stationary and synchronous frames
taking the angular velocity equal to: =0 and = « Where ., corresponds to the angular
velocity of the stator field. Now we could write the scalar clectromagnetic torque equa-
tion that could be expressed in the following basic forms used:
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where: P is a number of poles.

Field Orientation Conditions: The flux and torque equations decoupling needs to
transform the stator flux, current and voltage vectors from (a, b, ¢) reference frame into
(g-d,s) reference frame and than to stationary and synchronous reference frames, [6].
The Fig. la illustrates the current and voltage vector representations in stator and rotor
synchronous frames and also the magnetic field orientation, where the rotor flux vector
is equal to the d-component of the flux vector, represented in a synchronous reference



134 leroham S. Baruch. Carlos Mariaca. and Irving-P. de la Cruz

frame ( 4= ). Which is aligned with the d-component of the current in this frame. For
more clarity, the current and flux orientation in the synchronous reference frame are
shown on Fig. Ib. So, the field orientation conditions are:
e =N jer o in e 10
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Taking into account that the rotor windings are shortcut, (the rotor voltage is zero) and
the given up field orientation conditions the first two components of (5) become:
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From (5), for the g-component of the rotor flux, it is obtained:
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Taking into account (10) and (12), the torque equation (9) obtained the final form:
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The equation (13) shows that if the flux of the rotor is maintained constant, so the
torque could be controlled by the g-component of the stator current in synchronous
reference frame. From the second equation of (11), taking into account (12) it is easy
to obtain the slipping angular velocity as:

0, =, =(r,L, 1 L)Yi; ! A;) (9

The final equations (12), (13), (14) gives us the necessary basis for a direct decoupled
field oriented (vector) control of the AC motor drive, where following Fig. 1(b), the g-
component of the stator current produced torque and the d-component of the stator

current produced flux.
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Fig. 1. Vector diagrams of the stator current, voltage and the rotor flux. a) The current and volt-
age veclor representations in stator and in rotor synchronous reference frames. b) The stator
current and the rotor flux vector representations in synchronous reference frame.
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Coordinate Transformations: The combined stator current transformation from (a, b,

©) to (g-d,s,e) synchronous reference frame [51, [6], is given by the equation:

i i, A =[‘(|/2)cosp—(~/5/2)smp]
"q‘ = C(?Sp - % [ =[-(1/2)cos p+ (3 /2)sinp]
i sinp f. fi ]

i

> | A =1=012)sinp+ (V3 12)cos p)
S =[=01/2)sinp— (3 /2)cos p]

as)

Flux and Torque Estimation: From the equation (5),

written for the stationary refer-
ence frame ( =0), we could obtain:
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The stator flux part of the equation (8) could be resolved for the rotor currents, as it is:
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Substituting (17) back in the rotor flux part of (8) we could obtain:
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Now it is easy to compute the angle
the sin, cos - functions of this angle,
coordinate transformations, which is:

A= JAIY +(42);p = tan™' (4. 1 2.):

sinp = /1‘;: 12);cosp = > 4 1A

needed for field orientation, the rotor flux, and
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The torque equation (13) could be rewritten in the form:
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3. Direct Torque vector Control of the Induction Motor

A General Control Scheme: A general block diagram of the direct torque vector con-
trol of the Induction Motor drive is given on Fig. 2(a). The direct torque control
scheme contains three principal blocks. They are: G1 - block of a velocity PI control-
ler; G2, G3 —blocks of hysteresis flux and torque controllers; Bl — block of angle (N)
computation; block of voltage commutations look up table; block of coordinate (a, b,
¢) to (g-d, s, e) transformation (see equation. (15)); block of a vector estimation, per-
forming the ficld orientation, i.e. the torque, the flux and the angle- -computations, see
equations (30), (31); block of the IM converter-machine system. The block of the IM
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converter machine system contains a three phase bridge ASCI DC-AC voltage fed
inverter, an induction motor model, and a model of the whole mechanical system
driven by the IM ((2/P)J(d /dt)=T.n-Tr. where J is the moment of inertia, Ty is the
load torque). The block of vector estimation performed rather complicated computa-
tions, so it contains various blocks, illustrated by Figs. 2(b) and 2(c). Fig. 2(b) illus-
trates the flux and angle estimation for ficld oricntation, computing (16), (18), (19).
The rotor flux computations block (see Fig. 2(b)) performs computations given by
(16), (18), illustrated by Fig. 2(c). The direct torque control is effectuated through a
look up table of voltage commutations that determine the on-off position of the thyris-
tors in three phase bridge inverter. The table entries are the torque and flux errors and
the stator field angle. The torque and flux crrors are discretized in 60° phase angle by
hysteresis comparators of two and three levels, respectively.

A Neural Networks Realization of the Control Scheme: The simplified Block-
Diagram (BD) of the indircct neural vector control system, given on Fig. 3 is partly
realized by four NNs, which function, topology and learning are briefly described.

The first Recurrent NN (RNN1) is an angular velocity recurrent neural controller
with one input (the velocity error), one output (the torque set point), where the To =
0.01 sec. is chosen with respect to the stator electrical time constant. The weights
learning is done in real — time using the Backpropagation (BP) algorithm. The RNN
topology and leamning are described in [2]. The RNNI function is given by:

T*(k+1) = plctk +1)- gd—atk)x(k) + b(k)e, (k) —w' (k)] - (k + 1)} 21)

Where: a(.) and b(.) are hidden layer RNNI weights; c(.) is an outpul layer RNNI1
weight; w"(.), w°(.) are threshold weights of the hidden and output RNNI layers,
respectively; is a tanh activation function; e, is a velocity error; T* is the torque set
point — output of the RNN1. The BP algorithm of learning for the output layer of the

RNNI, [2], is given by:
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Fig. 2. Block diagrams. a) General BD of a direct IM vector control. b) BD of the
vector estimation computations. ¢) BD of the flux estimation computations.
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The BP algorithm of Iearning for the hidden layer of the RNNI, [2], is given by:
a(k+1) = a(k)+nR(k)x(k):b(k +1) = b(k) + nR(k)e,,, (k) (23)
Wk +1) = w" (k) + R)=1): R(K) = c(h)e, , ()1 = (=(K))?]
Where the learing rate is: =0.01.

The second Feedforward NN2 performed the rotor torque estimation (see equation
(20)). The rotor (g-d,r) flux components “gs» “us are previously computed using cqua-
tion (16) (see Fig.2c), and they are inputs of FFNN2. The other two inputs are the
stator current components- i, i%y,. The FFNN2 output is the torque- T,,,. The FFNN2
topology is (4-20-5-1). The FFNN2 learning is off-line, applying the Levenberg-
Marquardt (L-M) algorithm [16], [17]. The final value of the MSE reached is of 10°'°.
The FFNN2 is learned and generalized by 2500 input-output patterns in 1179 epochs.

The third Feedforward NN3 performed rotor flux estimation using (19) equation.
The rotor (g-d,r) flux components- "4 us arc previously computed using equation
(16) (see Fig.2c), and they are inputs of FFNN3. The FFNN3 output is the rotor flux-

+. The FFNN3 topology is (2-20-5-1). The FFNN3 learning is off-line, applying the
L-M algorithm. The final value of the MSE reached is of 10", The FFNN3 is learned
and generalized by 2500 input-output patterns in 617 epochs.

The fourth Feedforward NN4 performed rotor flux estimation using (19) equation.
The rotor (q-d,r) flux components- " “us are previously computed using equation
(16) (sce Fig. 20), and they are inputs of FFNN4. The FFNN4 output is the field angle

- The FFNN4 topology is (2-20-5-1). The FFNN4 learning is off-line, applying the L-
M algorithm. The final value of the MSE reached is of 10"°. The FFNN4 is lcarned
and generalized by 2500 input-output patterns in 727 epochs.

4. Graphical Results of the Control System Modeling

The parameters of the IM used in the control system modelling are: power- 20Hp;
nominal velocity — N=1800 Rev.pm; pole number P = 4: voltage- 220 volts; nominal
current — 75 A; phase number 3; nominal frequency 60 Hz; stator resistance r, = 0,1062
Ohms; rotor resistance referenced to stator r,’= 0.0764 Ohms; stator inductance L, =
0.5689. 107 Henry; rotor inductance referenced to stator L," = 0.5689. 10° Henry;
magnetizing inductance L,, = 15.4749. 1073 Henry; moment of inertia J = 2.8 kg.m".
The control system modeling is done changing the load torque in different moment of
time. Figs. 3 (a) and 3 (b) show the angular velocity set point vs. the IM angular veloc-
ity in the general case of velocity control and particularly with load torque changes.
The results show that the angular velocity control system has a fast speed up response
and satisfactory behaviour in the case of load change. Figs. 4(a) and 4 (b) show the
flux graphics of control system with hysteresis control applying the classical control
scheme and applying the scheme using NNs. The results show a faster and better re-
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sponsc of the neural system. Figs. 5(a) and 5(b), Figs. 6(a) and 6(b) show the torque
graphics with hysteresis control in the same cases and a load changes. The results show
a faster and better response of the neural system. Figs. 7(a) and 7(b) and Figs. 7(c) and
7(d) shows the (a,b,c) stator currents of hysteresis controlled system using classical and
neural control schemes in load changes conditions for different time intervals. The

results show a good performance of the neural control system at all.

s
=1

i -
z -1
- / &

=
»3

a) ik

Fig. 3. Graphical results of the IM velocity control. a) General graphics of the angular velocity
control; b) Graphical results of angular velocity control with load changes.
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Fig. 4. Graphical results of the IM flux control. a) Graphics of the flux classical control; b)
Graphics of the flux control using ncural networks.
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Fig. 5. Graphics of the process history of the torque control with load changes. a) Graphics of
the torque classical control. b) Graphics of the torque control using neural networks.
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Fig. 7. Graphical results of (a,b,c) stator currents during load changes. a) and c) Classi-
cal control. b) and d) Control using neural networks.

5. Conclusions

The paper proposed a neural network solution to the direct torque vector control of a
three-phase induction motor including velocity RNN controller, and hysteresis control-
lers for flux and torque, which permitted the speed up reaction to the variable load. The
period of discretization of the RNN velocity controller is chosen with respect to the AC
stator electrical time constant. The basic equations and elements of the direct field
oriented torque control scheme are given. The control scheme is realized by one RNN
BP real-time velocity controller and three FFNN learned off-line by Levenberg-
Marquardt algorithm with data taken by classical control simulations. The LM algo-
rithm has a 10" set up error precision. The graphical simulation results exhibited a
better performance of the adaptive NN control system with respect to the classical
control in variable load conditions.
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